Automated Cardiac Beat Classification Using RBF Neural Networks
نویسنده
چکیده
This paper proposes a four stage, denoising, feature extraction, optimization and classification method for detection of premature ventricular contractions. In the first stage, we investigate the application of wavelet denoising in noise reduction of multi-channel high resolution ECG signals. In this stage, the Stationary Wavelet Transform is used. Feature extraction module extracts ten ECG morphological features and one timing interval feature. Then a number of radial basis function (RBF) neural networks with different value of spread parameter are designed and compared their ability for classification of three different classes of ECG signals. Genetic Algorithm is used to find best value of RBF parameters. A classification accuracy of 100% for training dataset and 95.66% for testing dataset and an overall accuracy of detection of 95.83% were achieved over seven files from the MIT/BIH arrhythmia database.
منابع مشابه
A Novel Classification Method using Effective Neural Network and Quantitative Magnetization Transfer Imaging of Brain White Matter in Relapsing Remitting Multiple Sclerosis
Background: Quantitative Magnetization Transfer Imaging (QMTI) is often used to quantify the myelin content in multiple sclerosis (MS) lesions and normal appearing brain tissues. Also, automated classifiers such as artificial neural networks (ANNs) can significantly improve the identification and classification processes of MS clinical datasets.Objective: We classified patients with relapsing-r...
متن کاملA New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملAn ischemia detection method based on artificial neural networks
An automated technique was developed for the detection of ischemic episodes in long duration electrocardiographic (ECG) recordings that employs an artificial neural network. In order to train the network for beat classification, a cardiac beat dataset was constructed based on recordings from the European Society of Cardiology (ESC) ST-T database. The network was trained using a Bayesian regular...
متن کاملAn Efficient Technique for Classification of Electrocardiogram Signals
This work describes a Radial Basis Function (RBF) neural network method used to analyze ECG signals for diagnosing cardiac arrhythmias effectively. The proposed method can accurately classify and differentiate normal (Normal) and abnormal heartbeats. Abnormal heartbeats include left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature contractions (APC) and premature v...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کامل